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Abstract 

X-ray Bragg-case diffraction in crystals distorted by 
a constant strain gradient is studied theoretically. 
The rocking curves and intensity distributions of the 
standing-wave fields are calculated for several data sets 
corresponding to real physical cases of diffraction in 
bent crystals (Si 111 reflection and Mo Kal radiation, 
GaAs 004 reflection and Cu Kal radiation, PbTe 002 
reflection and Cr Kal radiation). The obtained curves 
are interpreted using the quasi-classical approximation 
of the exact analytical solution of the problem. The 
oscillations on one flank of the rocking curves are 
shown to result from interference between the wave 
directly reflected at the crystal surface and the one 
issued from the wave field deflected back to the surface 
along a curved trajectory. Formulae for their distances 
are also derived. The sensitivity of the rocking curves 
and X-ray standing waves to the crystal curvature and 
absorption is discussed. In particular, the phase shift 
between the oscillations in the rocking curve and in the 
standing-wave intensity profile can be readily used to 
determine the positions of atoms in the bent crystal or 
at its surface. 

1 Introduction 

The X-ray standing-wave technique (XSW) is now 
a well established tool to determine with a high accuracy 
the position of foreign atoms (e.g. adsorbed on the 
crystal surface or diffused into the crystal) with respect 
to the crystalline lattice. It is particularly well adapted 
(and consequently most often employed) to studies of 
surfaces and interfaces. 

The principle of the technique, proposed by Batter- 
man (1964, 1969), which was realized experimentally 
for the first time by Kjaer Andersen, Golovchenko & 
Mair (1976) and has been developed since then in many 
papers [see Malgrange & Ferret (1992) and Zegen- 
hagen (1993) for recent reviews and further references], 
is based on the coupling between the diffracted and 
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forward-diffracted waves in a crystal undergoing dynam- 
ical diffraction. Interference between these two waves 
gives rise to a standing wave field inside and above the 
crystal. Its electric displacement D at a point r is given 
by 

D = Do exp(iKo • r) + Dh exp(iKh • r), (1) 

where Do and D h  a re  the pseudoamplitudes (complex, 
vector and constant) of the waves in the forward- 
diffracted and diffracted directions, respectively, Ko 
and K h  = Ko  q-h  are their wave vectors, h is the 
reciprocal-lattice vector. 

If, for simplicity, an incident plane wave polarized 
perpendicularly to the plane of diffraction is assumed, 
one can write 

IDI 2 - IOol211 + IGI 2 + 21Gt cos(h ,  r + ~bp)], (2) 

where Do and Dh are  the pseudoamplitudes (complex, 
scalar and constant) of the forward-diffracted and dif- 
fracted waves, respectively, and 

G = Dh/Do = IGI exp(iCp). (3) 

In a perfect crystal, h .  r = 27r(N + Ad/d),  where N 
is an integer, d is the spacing of the diffracting planes 
and Ad is the distance from a point located at r to the 
nearest diffracting plane. The modulus and the phase ~bp 
of ~p are functions of the departure of the incident 
wave A0 from the Bragg angle. Since ~bp varies by 7r 
when passing from the low-angle side of the diffraction 
profile to the high-angle one, curves representing IDI 2 
as a function of A0 depend strongly on the value of 
Ad/d. By measuring at the same time the rocking 
curve and a signal proportional to IDI 2 (for instance, the 
intensity of fluorescence of adsorbed atoms or the flux of 
photoelectrons), one can determine with a high accuracy 
the Ad/d  values for these atoms, i.e. their position with 
respect to the bulk lattice. 

XSW's are now widely used for various applications. 
However, while the basic dynamical theory for perfect 
crystals is well known and established, XSW's in dis- 
torted crystals have only rarely been discussed; numeri- 
cal solutions of the Takagi-Taupin equations (Takagi 
1962, 1969; Taupin 1964) were obtained for a crystal 
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with a transition layer (Authier, Gronkowski & Mal- 
grange, 1989) and a crystal with a linear gradient of 
the parameter normal to the crystal surface (Vartanyantz, 
Kovalchuk & Beresovsky, 1993). The aim of the present 
paper is a detailed theoretical study of the rocking curve 
and the standing-wave field for crystals distorted by a 
uniform strain gradient. 

2. Exact analytical solution for the 
crystal with a constant strain gradient 

The electric displacement in a distorted crystal is a 
function of the position vector r: 

D(r) = Do(r) exp(iKo, r) + Dh(r) exp( iKh,  r), (4) 

where Kh = Ko + h, h being the (constant) reciprocal- 
lattice vector for the perfect crystal. Consequently, 
the normalized squared electric displacement defined 
as Y ( r ) =  IO(r)12/IOo(r)l 2 is 

Y (r) = 1 + IS(r)l z + 21¢(r)l cos[h • r + ¢(r)] ,  (5) 

where ¢ ( r )  is the phase of ~(r) = Dh/Do [cf. (3)]. 
Chukhovskii, Gabrielyan & Petrashen' (1978) have 

given formulae that allow one to obtain the pseudo- 
amplitudes Do and Dh at every point of the crystal 
by integrating the corresponding Green functions, mul- 
tiplied by the amplitude of the incident wave, along 
the entrance surface of the crystal. They analysed the 
special case where the phase of the incident wave along 
the entrance surface varies linearly with the coordinates, 
i.e. for a plane wave incident on a flat crystal with a 
distortion such that 

h - u ( r )  = - 2 B Z  2, (6) 

where Z is a reduced coordinate along the normal to 
the surface: Z = zTr/A, z being the usual coordinate 
and A the extinction length. For such a case, they 
performed the integration and obtained the following 
formula for Dh/Do: 

= - i (Xh/Xh)(1  + ixo)~ 1/2 

X [D_l_, (y) /D_~,(y)]  exp(2iBZ2), (7) 

where D_n_~, is the parabolic cylinder function of order 
( - n -  u); t~--- J(XhXh)I /21TC(XhXh)  U2 [g < 0 due 
to the form of the waves chosen in (1)]; Xh and Xh are 
the h and h Fourier coefficients of the dielectric suscep- 
tibility; ~ means the real part of a complex number, 
f f  is its imaginary part; y = -2r]f,1/z; f,, = i /4B; 
u = t?(1 + in)2; the constant strain gradient 4B is 
defined as 4B = OZ(h • u)/OSoOSh, where So and Sh are 
reduced (dimensionless) coordinates related to the usual 
oblique coordinates so and Sh by So = soTrsin O B / A  and 

Sh = ShTrsin OB/A ,  respectively; the (dimensionless) 
incidence parameter r/o proportional to Avq is given by 

~7o = (A0 sin20B + Xo)/TC(XhXh)I/2; (8) 

At9 = 0 - OB is the departure of the incidence angle 0 
from the Bragg angle 0B; ~7 is the local value of the in- 
cidence parameter, which varies during the propagation 
of wave fields in the crystal according to the relation 

~7 = rio + 4BZ. (9) 

The strain parameter 4B is related to the/3 parameter 
defined by Kato (1964) by the simple relation 4B = 
/3//3c, where/3c = 7r/(2Ao) is the critical value of the 
strain gradient introduced by Authier & Balibar (1970); 
Ao = A/ tan  0 s  represents the inverse of the distance 
between the apices of the dispersion surface and is 
characteristic of the crystal and the reflection. 

The imaginary part of the incidence parameter, 7/i = 
J(Xo)/7"C(XhX~) 1/2, is directly related to the normal 
linear absorption coefficient #0 through the formula r/i = 
/~po/[47rJ-~(Xh)Ch)l/2]. Notice that here J ( X o )  and ~7i are 
positive due to the choice of the form of the exponentials 
describing the waves in (1). 

All these expressions apply to the symmetric Bragg 
case and a polarization; for the 7r polarization, both Xh 
and Xh have to be multiplied by cos 20B. 

It can be shown that the condition of linearity of the 
phase along the entrance surface, necessary to obtain (7), 
is also satisfied in the case of a cylindrically bent crystal 
if the incident wave is spherical and issued from a point 
that lies on the Rowland circle. The displacement field 
u = [Ux, Uy, Uz] can then be written as 

Ux = x z / g  + (ssI /Sl l )Z2/2R 

uy = O 

Uz = - x2 /R  + (S31/Sll)Z2/2R, 

(10) 

where R is the radius of curvature and s~j are the 
components of the compliance tensor characterizing the 
anisotropic properties of the elastically bent crystal. The 
product h-  u(r)  is a quadratic function of So and Sh and 
can be written as h .  u(r)  = 2(AS2o + 2BSoSh + CS2) .  
Integration of the Green function along the entrance 
surface gives 

= - i (Xh/Xh)(1  + i t c ) f ' l /Z[D- l -~(y ) /D- , , ( y ) ]  

x e x p [ - i h ,  u(r)], (11) 

which is equivalent to (7) but valid for the cylindrically 
bent crystal as well; ~ is again a function of y, which 
also for this more general case is a function of B [see 
the formula for y, given after (7), and (9) for ~7 which 
is still valid]. 



/ 

F. N. CHUKHOVSKII, C. MALGRANGE AND J. GRONKOWSKI 49 

It is readily seen that the coefficients A and C charac- 
terizing the constant strain gradient appear in (11) only 
in the phase factor exp [ - i h ,  u(r)]; the important term 
is the one with the mixed derivative, as 4B appears in 
y and in t). 

In the further course of this work, the analytical 
results will be illustrated with numerical results ob- 
tained for several physical cases. The numerical cal- 
culations are made for the case of a depth-dependent 
deformation [given by (6)] because then, instead of 
the full Takagi-Taupin theory with its set of partial 
differential equations, the one-dimensional version due 
to Taupin (1964) with a single ordinary differential equa- 
tion (the 'Taupin equation') can be used. However, it is 
to be stressed that the whole discussion applies also in 
the case of a cylindrically bent anisotropic crystal and 
the source of X-rays on the Rowland circle. 

3. Propagation of X-ray wave 
fields in distorted crystals 

Some useful results, concerning the propagation of X-ray 
beams inside crystals distorted by a constant strain 
gradient and obtained first by Gronkowski & Malgrange 
(1984) through computer simulations and then analyti- 
cally by Chukhovskii & Malgrange (1989), will be 
briefly recalled here. X-ray waves incident on such crys- 
tals with a departure from the Bragg angle Az9 outside 
the domain of quasi-total reflection (called hereafter, 
to simplify, the domain of 'total' reflection) propagate 
inside the crystal along hyperbolic paths. The sign of 
their curvature depends on the value of rio. For ri,. = 
7~(r/o) on one side of the rocking curve, the beam paths 
are curved towards the surface of the crystal; this side 
corresponds to r/,. < - 1  if B > 0 and r/~. > 1 if B < 0 
(Fig. 1). On the other side (corresponding to r/,. > 1 if 
B > 0 and r/,. < - 1  if B < 0), they are curved towards 
the inside of the crystal. 

These properties of beam paths in the crystal 
allow one to interpret physically some results first 
obtained by Taupin (1964) [recently also by Vartanyantz, 
Kovalchuk & Beresovsky (1993), Uschmann, F/Srster, 
Giibel, H61zer & Ensslen (1993) and Krisch (1993)]. 
The rocking curves for crystals with a constant strain 
gradient present oscillations of intensity on one side 

incident ~ Sh r e f l e ~  beam 

So 

Fig. 1. Ray trajectories in a crystal with a constant strain gradient in the 
symmetric Bragg case, B > 0: (1) r/r < - 1 ;  (2) r/r > 1. 

Table 1. Values of physical parameters for the studied 
cases 

It0 is the linear absorption coefficient, r/i -- o'7"(7/0) is the imaginary part 
of the incidence parameter, ~; = ff(X~hxh)l/2/"~(XhXh) 1/2, R is the 
radius of curvature of a bent crystal, corresponding to the given physical 
case (rows) and the value of strain gradient (colunms a-c). 

R (m) 
#0 

Physical case ( c m -  I ) r/i ~ a b c 
Si(111), Mo KCrl 14 0.0095 -0 .0066  127 24 4.5 
GaAs(004), Cu KCtl 343 0.0503 -0 .0467  9.44 1.8 0.34 
PbTe(002), Cr KO~l 5548 0.2667 -0 .2544  0.56 0.11 0.02 

which, as will be shown in the further course of this 
work, are due to interference between the wave directly 
reflected at the crystal surface and the wave issued from 
a wave field propagating along a path curved back to 
the surface. This phenomenon occurs only on one flank 
of the rocking curve, which will be called here the 
'oscillating wing' (as opposed to the 'ordinary wing'). 

4. Numerical solutions for a crystal 
with a constant strain gradient 

In order to visualize the full character of ~ the results 
obtained for the case of constant strain gradient, a 
numerical program for solving the Taupin equation, 
described elsewhere (Gronkowski, 1991), was used. The 
results of the calculations of the rocking curves and the 
normalized squared induction at the crystal surface are 
presented in Figs. 2 and 3, respectively. 

The calculations were made for three values of the 
strain gradient4B: 0.0285, 0.15 and 0.8 [shown .in 
Figs. 2 and 3 in columns (a), (b) and (c), respectively]. 
Three physical cases of symmetric Bragg diffraction with 
various radiations on different crystals were chosen to 
include in the study also the role of absorption. The 
lower row corresponds to 111 reflection from silicon, 
taken with Mo Kc~l radiation (weak absorption), the 
middle row to 004 reflection from GaAs, taken with 
Cu Kc~l radiation (strong absorption), and the upper row 
to 002 reflection from PbTe, taken with Cr KO~l radiation 
(extremely strong absorption). The values of various 
parameters for these three cases are given in Table 1. 

One readily sees the most characteristic feature of 
the rocking curves - their oscillating wing. As B > 0, 
it is always the left one (with r/,. < -1) .  The period 
of oscillations increases with B and their attenuation 
depends strongly both on the absorption and the value 
of B (see next section for a discussion). 

For weak deformations, the rocking curves in the 
domain of 'total' reflection and on the ordinary wing are 
almost identical to those for perfect crystals [Fig. 2(a)]. 
The oscillations on the oscillating wing are very densely 
spaced and obviously it would not be possible to obtain 
evidence of them in a real experiment. 
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The Y curves (corresponding to the XSW signal for 
h. r = 0) also exhibit fringes with the same distances as 
those in the respective rocking curves which - especially 
for strong gradients and weak absorption [Fig. 3(c)(i)] - 
change the XSW signal dramatically. However, even for 
extremely strong absorption [Fig. 3(iii)], the XSW signal 
differs from the perfect-crystal one not only through the 
oscillations but also in the relation of the intensities on 
the left and right flanks of the 'total' reflection domain. 

5. Discussion of the analytical solution 

5.1. Quasi-classical approximation of the analytical 
solution 

We shall use, as in an earlier paper (Chukhovskii 
& Malgrange, 1989), the quasi-classical approximation 
of the parabolic cylinder functions D_n_,.,(y), which is 
valid for ly 2 + 4vl 1/2 >> 1. In this approximation, the 
D_n_~, functions are written as a sum of two exponential 
functions given in Appendix A, where it is also shown 
that the second term vanishes for incidence parameters 

corresponding to the ordinary wing and is negligible in 
the domain of 'total' reflection. In these cases, the ratio 
of the parabolic cylinder functions may be written as 
(see Appendix A) 

D_l_.(y)/D_.(y) 
= ~-~12i1{~ + [772 - (1 + in)2]~/2). (12) 

Substituting (12) into (11), one gets 

= (Xh/Xh)((1 + it~)/{~7 + [r/2 - (1 + i t~)211/2})  

× e x p [ - i h ,  u ( r ) ] ,  ( 1 3 )  

w h i c h ,  apart f r o m  the  fac tor  e x p [ - i h ,  u ( r ) ] ,  is e x a c t l y  
the value of ~p for a perfect infinitely thick crystal 
receiving an incident plane wave characterized by the 
incidence parameter r/. 

Let us then write 

= IG( )I exp[i~bp(~7)] e x p [ - i h ,  u(r)], (14) 
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Fig. 2. Rocking curves for crystals with a constant strain gradient: (a) 4B = 0.0285, (b) 4B = 0.15, (c) 4B = 0.8. (i) 111 reflection from silicon, taken 

with Mo Kal  radiation [the inset in (c)(i) shows the rocking curve in a larger range of - 2 0  < r/r < 2]; (ii) 004 reflection from GaAs, taken with 
Cu Kcq radiation; (iii) 002 reflection from PbTe, taken with Cr Kax radiation. The dashed lines represent the rocking curves for the perfect crystals. 



where le,(~)l and ¢p(17) are the modulus and the phase 
of ~p. Then, from (5), the total electric induction in the 
distorted crystal is expressed as 

IDI 2 = IDol~(1 + I~,(~)1 ~ + 21e,(n)l 
× cos{h • r + Cp(r/) - h .  u ( r ) ) )  

= I D o l ~ ( l +  I~(v) l  2 + 21~p(n)l 
× cos{h • [r - u(r)] + ~p(r#)}), (15) 

r being the position vector in the distorted crystal. Let 
us call rp the position vector of the same point before 
the deformation was introduced: 

h .  [r - u(r)] = h . r p  = 27r(N + Ad/d), (16) 

ly 2 + 4ul 1/2 = IBI-~12[(1 - r#~ + 77 - ,~)2 

-{- 4(to - rh, r/i)2] U4 

>>1. 
where N is an integer, equal to the number of diffracting 
planes between the origin and the considered point 
whose distance to the nearest diffracting plane is Ad. 
Therefore, 

From (17), it can be concluded that (under the condition 
of validity of the quasi-classical approximation) for 
local 7/ values inside the domain of 'total '  reflection 
and on the ordinary wing of the rocking curve the 
XSW intensity can be considered as corresponding to the 
' tangent'  perfect crystal, i.e. the one that would receive 
a wave with the incidence parameter equal to the local 
parameter 77 [obtained from (9) for given % and 4B]. 

The domain of validity of the quasi-classical ap- 
proximation is defined by a condition on the modulus 
of (y9 + 4u)1/2 (see Appendix A): 

(18) 

(19) 

Since r/i > ]tc], condition (18) may be replaced for the 
sake of discussion by a more stringent (and simpler) one: 

Y =  1 + IG(n)I 2 + 21~p(n)lcos[2~Ad/d+ %(V)]. (17) I 1  - V~Ill2/IB1112 >> 1. 
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Fig. 3. The normalized wave-field intensity Y in crystals with a constant strain gradient, calculated for h-  r = 0, as a function of the dimensionless 
deviation parameter qr [see caption to Fig. 2 for explanations of (a)-(c) and (i)-(iii)]. 
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Table 2. The domain of validity of the quasi-classical 
• approximation for various values of 4B 

lagl = 0.001 1481 = 0.0285 14~1 = 0.15 14BI = 0 . 8  

I,Trl < 0.987, I,Trl < 0.54, Iorl > 2.8 1o,-I > 4.6 
I,.I > 1.012 1o~l > 1.31 

If we assume that condition (19) is satisfied if its left- 
hand side is greater than 10: 

I1 - r/~l~1211BI ~12 > 10, (20) 

then, after simple manipulations with inequality (20), 
its domain of validity can easily be obtained. The 
results of such a procedure for four different values 
of B are summarized in Table 2. It is seen that, for the 
smallest values of the strain gradient (IBI of the order 
of 0.001), condition (20) is fulfilled everywhere except 
in a small domain around [r/,~l = 1. For larger values 
of In I, condition (20) is not satisfied in a larger domain. 

5.2. The physical origin of the oscillations and the role 
of absorption 

It is clear that the second term in the development of 
the parabolic cylinder functions Dn-~ (see Appendix A) 
represents the diffracted wave in the wave field 
deflected towards the crystal surface while the first 
term corresponds to the wave diffracted directly at 
the surface. It is interesting to discuss the ratio of 
these two terms [in (25), see Appendix A], equal 
to exp(2On+v)exp[ilr(n + u)]. It can be shown that 
the modulus of this ratio is an exponentially decreasing 
function if r/i > 4B/3 independently of the value of r/,.. 
On the other hand, for rli < 4B/3, the second term is 
greater than the first one. The smaller rli is with respect 
to 4B/3, the more the second term becomes larger, 
which results both in an increase of the half-width of 
the rocking curve and a decrease in the contrast of the 
oscillations, because then the interferences take place 
between two terms of very different values. 

When r// does not differ very much from 4B/3, the 
two terms are of the same order and, consequently, the 
amplitude of the oscillations attains the greatest values; 
however, the averaged shape of the rocking curve is 
hardly different from the perfect one. 

When qi > 4B/3, the amplitude of the curved wave 
field is smaller than the amplitude of the wave diffracted 
directly at the surface. Consequently, the rocking curve 
is not widened and the amplitude of the oscillations is 
small, becoming practically zero for r/i >> 4B/3. 

These analytical results can be checked on the cal- 
culated rocking curves (Fig. 2) where the values of 4B 
were chosen in such a way that, for the cases on the 
diagonal [Figs. 2(a)(i), (b)(ii) and (c)(iii)], the condition 
r/i = 4B/3 is satisfied. When 4B/3 > rh, the half-width 
of the rocking curve indeed gets larger than the Darwin 

width [Figs. 2(b)(i), (c)(i), (c)(ii)] and the oscillations 
are strong and easily visible. On the other hand, when 
4B/3 < r/i, the half-width practically does not change 
[Figs. 2(a)(ii), (a)(iii), (b)(iii)]. Nevertheless, oscillations 
are still present, since there is still some intensity left in 
the wave fields deflected to the surface, especially the 
ones with smaller It/. I that have not traversed a long 
path in the crystal. 

5.3. The oscillations near the limit of the 'total' reflec- 
tion domain 

In order to explore the flanks of the rocking curves 
close to the limit of the 'total' reflection region, it is 
necessary to go back to the differential equations that 
define the D-n - , ,  functions. In the domain of It/,. I "-" 
1, the term 7/2 - 1 can be approximated as 2(r/,. - 1) 
if rl,. " 1 or -2(rb. + 1) if r/,. _~ - 1 .  The two cases 
have to be distinguished, but in both of them the basic 
differential equation can be written as 

02f/O~ 2 - f i r  = 0 .  (21) 

Its solution is the Airy function Ai((); ~ is a new 
variable, which is not exactly the same for the two signs 
of rb.. 

Depending on the sign of ~(ff),  the Airy function 
Ai(ff) is tabulated or has to be transformed in a sum of 
two functions that are tabulated. In order to illustrate the 
results, let us assume B > 0. Then, on the side of the 
rocking curve where rb. < - 1  (but not very different 
from rb. = -1 ) ,  the Airy function is written as 

Ai( ) = a/z] 
+ (22) 

where J-l~3 and J1/3 are  the ordinary Bessel functions. 
They have an oscillatory character and their asymptotic 
developments are cosine functions. If,  for the sake 
of simplicity, absorption is neglected, then these de- 
velopments give for the Airy function cos{2[-2(rb. + 
1)]2/31~1/3 - 7r/4}. Thus, it is possible to deduce the 
period of the oscillations of the rocking curve near 
rl,. = - 1 :  

r l  = 27rB/[2( - rb . -  1)] 1/2. (23) 

Table 3 shows the values calculated with formula (23) 
as compared with the values obtained from the full 
numerical calculations. It is readily seen that the approx- 
imate formula (23) works really well only for the values 
of Ir/,.I very close to 1 (i.e. for small values of the strain 
gradient that lead to very condensed fringes). 

5.4. The oscillations far from the 'total' reflection domain 

If it is assumed that the oscillations of the intensity 
are caused by the interference between the wave fields 
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Table 3. Comparison of the values of 7/'[ c) obtained through full calculations for Si(111), Mo Keel and 7"[ 0 obtained 
from formula (23) 

4B = 0.001 4/3 = 0.0285 4 B :  0.15 

- 1 . 0 2 0 0  0.0079 0.0079 - 1 . 1 8 4  0.074 0.074 -1 .541  0.206 0.228 
-1 .0272  0.0067 0.0067 - 1 . 2 5 0  0.059 0.063 - 1 . 7 2 9  0.170 0.196 
-1.0336 0.0061 0.0061 -1.306 0.053 0.057 -1.886 0.145 0.178 
--1.0395 0.0056 0.0056 - 1 . 3 5 7  0.048 0.053 --2.026 0.134 0.165 
--1.0450 0.0052 0.0052 --1.404 0.046 0.050 -- -- -- 

Table 4. Comparison of the values of T~ ¢) obtained through full calculations [from the curves in Fig. 2(i)] and TJ t) 
obtained from formula (24) 

4 B = 0 . 0 2 8 5  4B = 0.15 4 B = 0 . 8  

. r  r2<c) T=<'> ~r r2<c) r~'> . r  r,<c) r~ ' )  
--4 0.012 0.0112 --10 0.023 0.0236 --20 0.064 0.0628 
--3 0.016 0.0150 --8 0.029 0.0296 --15 0.085 0.0838 
--2 0.025 0.0224 --6  0.040 0.0394 --10 0.124 0.1256 
. . . .  4 0.061 0.0592 --5 0.258 0.2514 

coming back to the surface and the incident waves, 
then it is possible to derive a formula for the period 
of the oscillations using the basic dynamical theory of 
X-ray diffraction [in particular, using the property of 
the symmetrical Bragg case for crystals with a constant 
strain gradient that the tie point of the wave field going 
out of the crystals takes a position on the same branch of 
the dispersion surface that is symmetrical with respect 
to the reflecting planes (see Gronkowski & Malgrange, 
1984)]. The simple formula found in this way for 77,. >> 1 
is 

T2 = 2rrB/In,.l. (24) 

Table 4 shows the values calculated with formula (24) 
as compared with the values obtained from the full 
numerical calculations [Figs. 2(a), (b), (c)(i)]. It is read- 
ily seen that the approximate formula (24) works very 
well indeed for the values of In~l not very close to 1. 
This is another proof that the oscillations originate from 
interferences between the incident and outgoing waves. 

5.5. Application of the oscillations for the XSW's 

The XSW signal on the oscillating flank is signifi- 
cantly influenced by the constant strain gradient in 
almost all cases studied. Except for cases of weak 
absorption and small gradients where the distances of 
the oscillation fringes are too small to be resolved in a 
real experiment, this feature may find a very interesting 
application, explained below: 

Notice that the phase shift between the oscillations in 
the rocking curve and in the Y profile is directly related 
to Ad/d [(17)]. The value of Ad/d is easily determined 
if one takes into account that the phase shift in the 
particular case of Ad/d = 0 is equal to 7r for B > 0 and 
to 0 for B < 0 (Appendix B and Fig. 4). More generally, 

the phase shift expressed in units of 27r is equal to Ad/d 
for B < 0 and Zld/dq-0.5 for B < 0. 

6. Conclusions 

We have used here a quasi-classical approximation to 
study the propagation of X-rays in cylindrically bent 
crystals. The range of validity of this approximation 
covers nearly all the values of incidence angles for 
small strain gradients (e.g. 4B = 0.001) and decreases 
when the strain gradient increases (see Table 2). Within 
this approximation, it is shown that the shape of the 
rocking curve and of the XSW signal for a crystal with 
a constant strain gradient are practically the same as 
for a perfect one in the total reflection domain and 
on one flank of the rocking curve. On the other flank, 
however, there are oscillations that are shown to be due 
to interferences between the incident wave and the wave 
fields whose trajectories are curved back to the surface. 
They become negligible when absorption is large enough 
to attenuate the wave field in the crystal to a sufficiently 
low level; a quantitative criterion relating ~7i, a parameter 
proportional to the ratio of the absorption coefficient 
to the structure factor of the given reflection, and the 
strain gradient 4B is given. For large absorption and 
small strain gradients, i.e. rh > 4B/3, the oscillations 
disappear almost completely; if absorption is small (~7i < 
4B/3), the rocking curve becomes enlarged due to the 
wave fields going out of the crystal surface. The values 
of the period of the fringes are calculated using the phase 
differences along the different curved trajectories. 

It is shown by a simple argument developed in 
Appendix B that the oscillations of the rocking curve 
and of the standing-wave field at the reflecting planes 
(Ad/d = 0) are in phase or out of phase depending 
on the sign of B. Therefore, a simple measurement of 
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the phase shift between the oscillations on the rocking 
curve and, for example, on a fluorescence curve due 
to adatoms is a direct measure of the position of the 
adatoms with respect to the reflecting planes. 

All these results have been derived from analytical 
results obtained for a constant strain gradient and an in- 
cident wave whose phase varies linearly on the entrance 
surface (i.e. cylindrically bent crystal and spherical wave 
with the source on the Rowland circle, or variation 
of lattice spacings and plane wave). They have been 
checked and illustrated for the simple symmetric case 

-5 
. I 

-4 -3 -2 -1 0 1 2 

"Or 
(a) 

s "  " •  

" - - - , ' #  i F i i ~.' ~ s  s t  ~ s  i • . , # x ~ # ~ , , ~  

-2 -1 0 1 2 3 4 5 

(b) -or 

Fig. 4. The normalized wave-field intensity Y (full lines) and the rocking 
curves (dashed lines) as a function of the dimensionless deviation 
parameter r/~ for: (a) 4B -- 0.8 and fir < - 1  [cf. Fig. 3(ii)(c)]; (b) 
4B ---- - 0 . 8  and ~r > 1; GaAs 004 reflection, Cu KC~l radiation. 

by computer experiments based on the Taupin equation; 
various values of the strain gradient and absorption were 
chosen so that rh was either smaller or larger or equal 
to the critical value of 4B/3. 

APPENDIX A 
Quasi-classical approximation of 

parabolic cylinder function 

We shall use, as in an earlier paper (Chukhovskii & 
Malgrange, 1989), the quasi-classical approximation of 
the parabolic cylinder functions valid for ly2+ 4ul ~/2 >> 
1: 

D-n- , ,  = exp[-log(y 2 + 4u)/41 

x {C(n + u) exp[-0n+,,(y)] 

+ e[n + u, x]C-I(n + u)(27r) 1/2 

x F-l(n  + u) exp[0n+v(y)]}, (25) 

where 

1 On+~,(y) = y(y2 + 4u)1/2/4 + (n + u - 7) 

x log[y(y 2 + 4v)~lg12ul121, (26) 

C(n + v) = exp{[u - (n + 1., - 1/2) log u]/2}, (27) 

0 if IXI ~ rr/4 
-exp[-iTr(n + u)] 

if 7r/4 < X < 57r/4 (28) 
e(n + u, X) = -exp[irr(n + u)] 

if - 5 r r / 4  < X < -7r /4  

and X is the phase of (yZ + 4u)l/z. 

(y2 + 4v)1/2 = [yZ + 4u11/2 exp(ix). (29) 

Consequently, the second term of the development 
of D_,~_,, functions is zero if IxI < 7r/4. Therefore, let 
us discuss the phase X of (yZ+ 4u)1/2. If we write 
explicitly 

y 2 + 4 u  = (i/B)[1-r]]+r]?-~2+2i(~-r],.rli)] (30) 

and define the phase angle q5 of the term in the brackets 
as  

tan ~b = 2(e; - r]r~7~)/(1 - r]~ + v~ - ~2)  (31) 

such that - r r / 2  < ~b < rr/2, then it is readily seen that 
the value of X depends on the sign of r = 1 - r/~ + 
r//2 _ ~;2. Positive values of r correspond to the domain 
of 'total' reflection and r < 0 outside it. Besides, in most 
cases, r//2 << 1 and ~;2 << 1. 

It can be shown that: 
(i) if r > 0 (the domain of 'total' reflection), then 

X = sign(B)(Tr/4) + q5/2 [where sign(B) = 1 for B > 0 
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and sign(B) = - 1  for B < 0] and Ixl 7r/2, the two 
parabolic cylinder functions D_,, and DI-~, reduce to a 
single term; 

(ii) if r<  0 (outside the domain of 'total' reflection), 
then X = sign(B)(Tr/4) - sign(r/,.)(Tr/2) 4- ~b/2; several 
cases have to be distinguished depending on the signs 
of B and ~7~ (keeping in mind that ~b > 0 for ~1,- > 1 and 
~b < 0 for r/~ < 1): 

(a) for B > 0 and ~7~ > 1, X = -7 r /4  + 4)/2; then 
-7 r /4  < X < 0; 

(b) for B < 0 and ~/,. < - 1 ,  X = 7r/4 + ~b/2; then 
0 < X < 7r/4; 

(c) for B > 0 and rh. < - 1 ,  X = 37r/4 + q5/2; then 
7r/2 < X < 37r/4; 

(d) for B < 0 and r/,~ > 1, X = -37r /4  + ~b/2; then 
-37r /4  < X < -7r /2 .  

In cases (a) and (b), Ixl < ~/4 and the functions D - v  
and DI_~, reduce to a single term. Physically, these two 
cases correspond to ray paths curved towards the inside 
of the crystal [Fig. 1, trajectory (2)]. In cases (c) and (d) 
[Fig. 1, trajectory (1)], the second term in the asymptotic 
development is not zero. 

Now we shall restrict ourselves to the cases where 
D_v and D-I-~,  reduce to the first terms. Strictly speak- 
ing, it means that we consider only values of r/,. on the 
ordinary wing of the rocking curve. Then, from (25), 
(26) and (27), one readily obtains 

D_,_v(y) /D_, , (y )  

= {C(1 - u) exp[-Ol+~,(y)]}/{C(-u) exp[-0v(y)]} 

= 2/[y 4, (y2 4, 4u)1/21, (32) 

which can be substituted into (7). 

APPENDIX B 
The phase shifts of the oscillations in the 

XSW's and rocking curves 

Let us denote the incident wave as Do and the directly 
reflected wave a s  Dh. Then we have Dh -- +aDo, with 
a > 0 and the upper sign corresponding to 77,. > 1, 
the lower one to 77,. < - 1  (as there is a phase shift 
between Dh and Do equal to 0 and 7r in these two ranges, 

respectively). If we denote as b exp(iqo)Do the diffracted 
wave issued from the curved wave field (b > 0), then 
the reflection coefficient R and the XSW yield Y will be 
given by 

R = I 4- a 4, bexp(iqo)[ 2 = a 2 4- b 2 -4- 2abcos  qa, (33) 

Y ( A d / d =  0) = I(1 + a) 4, bexp(iqo)l 2 

= (1 4-a) 2 4-b 2 4, 2b(1 4- a) cos go. 

(34) 

R is maximum for qo -- 7 r / 2 +  2kTr if  r/,. > 1 and 
qo = -7 r /2  + 2kTr if  z/~ < - 1  while Y is maximum 
for 9~ = 7r/2 4. 2kTr regardless of rh-. Therefore, if  r/,~ > 
1 and B < 0, the oscillations for R and Y are in phase; 
the reverse holds for r/,. < 1 and B > 0. 
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